- 玻璃表面体积电阻测试仪
- 玻璃表面体积电阻测试仪
玻璃表面体积电阻测试仪电阻率测试仪主要由五个部分组成:(1)数据采集系统等,(2)信号发生器和放大器,(3)变压器,(4)样品模具,(5)小电流传感器。
无接触电极电阻率测定仪是基于变压器原理发明的,。装在环形模具里的待测样品作为次级线圈,当信号发生器和放大器在变压器的初级线圈上施加一定电压时,由于电流感应,就会在待测线圈上产生恒定的环形电压U,再由小电流传感器测得待测样品中的环电流,根据由欧姆定律及样品尺寸推导出的电阻率公式即可计算得到待测样品的电阻率。
玻璃表面体积电阻测试仪
符合国标:GB/T1410-2006 ASTM D257-99
测量范围:0.01×104Ω~1×1018Ω
显示方式:液晶显示、直读电阻、电流
测试方法:三电极法
符合标准:
GB/T 1410-2006《 固体绝缘材料体积电阻率和表面电阻率试验方法》
ASTM D257-99《绝缘材料的直流电阻或电导试验方法》
GB/T 10581-2006 《绝缘材料在高温下电阻和电阻率的试验方法》
GB/T 1692-2008 《硫化橡胶 绝缘电阻率的测定》
GB/T 2439-2001《硫化橡胶或热塑性橡胶 导电性能和耗散性能电阻率的测定》
GB/T 12703.4-2010 《纺织品 静电性能的评定 第4部分:电阻率》
GB/T 10064-2006_《测定固体绝缘材料绝缘电阻的试验方法》
GB/T 22042-2008《服装 防静电性能 表面电阻率试验方法》
EN 1149-1-1995 《静电性能 第1部分表面电阻检验方法和要求》
GB/T 1410-2006《固体绝缘材料体积电阻率和表面电阻率试验方法》(与标准IEC93-1980等效)
FZ/T 64013-2008 《静电植绒毛绒》
SJ/10694-2006《电子产品制造与应用系统防静电检测通用规范》6.1
概述
既可测量高电阻,又可测微电流。采用了美国In公司的大规模集成电路,使仪器体积小、重量轻准确度高。数字液晶直接显示电阻值和电流。量限从1×104Ω ~1×1018 Ω,是目前国内测量范围zui宽,准确度zui高的数字超高阻测量仪。电流测量范围为2×10-4 ~1×10-16A。机内测试电压10V/50V/100V/250V/500V/1000V任意可调。本仪器具有精度高、显示迅速、性好稳定、读数方便. 适用于橡胶、塑料、薄膜、地毯、织物及粉体、液体、及固体和膏体形状的各种绝缘材料体积和表面电阻值的测定。典型应用
1、测量绝缘材料电阻(率)
2、测量防静电材料的电阻及电阻率
3、测量计算机房用活动地板的系统电阻值
4、测量防静电鞋、导电鞋的电阻值
5、光电二极管暗电流测量
6、物理,光学和材料研究
标准配置:
1、测试仪器:1台
2、电源线:1条
3、测量线:3根(屏蔽线、测试接线、接地线)
4、使用说明书:1份
备注:
配不同的测量电极(夹具)可以测量不同材料(固体、粉体或液体)的体积电阻率和表面电阻率或电导率,*符合国家标准GB1410-2006固体电工绝缘材料绝缘电阻、体积电阻系数和表面电阻试验方法,ASTM D257 绝缘材料的直流电阻或电导试验方法 等标准要求。表面电阻和体积电阻测试仪3. 术语
3.1 定义:
3.1.1 以下定义直接来自术语标准D1711,适用于本标准正文所用术语。
3.1.2 绝缘电导,名词——当直流电压施加到两个电极上,两个电极(在样本上或样本内)之间的总体积和表面电流的比值。
3.1.2.1 讨论——绝缘电导是绝缘电阻的倒数。
3.1.3 表面电导,名词——当直流电压施加到两个电极上,两个电极(在样本上表面)之间的电流的比值。
3.1.3.1 讨论——(实际测量不可避免地要包含某些体积电导)表面电导是表面电阻的倒数。
3.1.4 体积电导,名词——当直流电压施加到两个电极上,两个电极(在样本上或样本内)之间的某个样本体积的电流的比值。
3.1.4.1 讨论——体积电导是体积电阻的倒数。
3.1.5 表面电导,名词——表面电导率乘以样本表面尺寸(电极之间的距离除以电极宽度定义为电流通路)的比值,该比值可变换为获得的测量电导,如果在正方形的反面形成电极的话。
3.1.5.1 讨论——表面电导用西门子表示。通常用西门子/平方(平方值大小是不重要的)来表示。表面电导是表面电阻的倒数。
3.1.6 体积电导,名词——体积电导乘以样本体积尺寸的比值(即电极之间距离除以电极的横截面面积),该值可通过获得电导转化为测量电导,如果在单位立方体的反面形成电极的话。
3.1.6.1 讨论——体积电导通常用西门子/厘米或西门子/米来表示,也是体积电阻的倒数。
3.1.7 中等导电的,形容词——描述了固体材料的体积电阻在1到10000000Ω-cm之间。
3.1.8 绝缘电阻(Ri),名词——施加到两个电极(样本上或样本内)总体积的直流电压与电极间表面电流的比值。
3.1.8.1 讨论——绝缘电阻是绝缘电导的倒数。
3.1.9 表面电阻(RS),名词——施加到两个电极(样本表面)的直流电压与电极间电流的比值。
3.1.9.1 讨论——(在实际测量时不可避免地包含某些体积电阻)表面电阻是表面电导的倒数。
3.1.10 体积电阻(RV),名词——施加到两个电极(样本上或里面)的直流电压与电极间样本体积上的电流的比值。
3.1.10.1 讨论——体积电阻是体积电导的倒数。
3.1.11 表面电阻,(ρs),名词——表面电阻率乘以样本表面尺寸的比值(电极宽度定义为电流通路除以电极间的距离),该值能转化为获得的测量电阻,如果在正方形反面形成电极的话。
3.1.11.1 讨论——表面电阻用欧姆表示。通常也可用欧姆/平方来表示(平方值大小是不重要的)。表面电阻是表面电导的倒数。
3.1.12 体积电阻,(ρv),名词——体积电阻率乘以样本体积尺寸的比值(电极间样本的横截面面积除以电极间的距离),该值能转化为获得电阻的测量电阻,如果在单位立方体的反面形成电极的话。
3.1.12.1 讨论——体积电阻通常用欧姆-厘米(优选)或欧姆-米来表示。体积电阻是体积电导的倒数。
表面电阻和体积电阻测试仪4. 试验方法的摘要
4.1 材料样本或电容器的电阻或电导通过在规定条件下测量电流或电压下降而得出。通过使用合适的电极体系,可分别测量表面和体积电阻或电导。当要求的样本和电极尺寸已知时,此时可以计算出电阻或电导。
表面电阻和体积电阻测试仪5. 重要性和用途
5.1 绝缘材料用于电子系统彼此和与地面之间隔离,该材料能提供零部件的机械支撑。由于此用途,通常要求具有尽可能高的绝缘电阻,以与可接受的机械、化学和耐热性能一致。因为绝缘电阻或电导组合了体积和表面电阻或电导,当实际使用时,要求试验样本和电有相同的形式,此时的测量值是非常有用的。表面电阻或电导随着湿度发生快速变化,然而体积电阻或电导则稍微变化,尽管总的变化在一些变化可能更大。
5.2 电阻或电导可用于间接预测某些材料的低频率电介质击穿和损耗因数性能。电阻或电导通常作为湿度含量,固化程度,机械连续性或不同类型老化的间接测量方式。这些间接测量的效用取决于通过理论或经验研究确立的相关度。表面电阻的降低可导致因为电场强度降低而发生电介质击穿电压的增加,或者由于应力面积的增加而发生电介质击穿电压的降低。
5.3 所有的电介质电阻或电导都取决于电化时间长短和施加的电压值(除了普通的环境变量之外)。这些因素必须已知,同时报告,以使得电阻或电导测量值有意义。在电绝缘材料工业中,形容词“表观"通常适用于在任意选择电化时间条件下获得的电阻值。见X1.4。
5.4 体积电阻或电导可通过在特定应用场合设计某个绝缘体使用的电阻和尺寸数据计算得出。研究已经表明电阻或电导随着温度和湿度的变化而变化(1,2,3,4)4,同时在设计工作条件时,必须已知这种变化。体积电阻或电导测量值通常用于检查绝缘材料的均匀性,或者对于加工,可探测影响材料质量的导电杂质,而这不容易通过其它方法观察到。
5.5 体积电阻超过1021Ω·cm(1019Ω·cm)时,样本在普通实验室条件测试获得的数值计算得出体积电阻,如果结果确实可疑,则应考虑通常使用的测量设备的局限性。
5.6 表面电阻或电导不能准确测量,只能近似测量,因为体积电阻或电导总是受到测量方法的影响。测量值还受到表面污染的影响。表面污染及其积聚速度受到许多因素的影响,包括静电充电和界面张力。这些因素反过来可以影响表面电阻。当包括污染,但是在通常常识下判断不是电绝缘材料的材料性能时,此时表面电阻或电导可视为与材料性能相关。
表面电阻和体积电阻测试仪6. 电极系统
6.1 绝缘材料的电极将允许亲密接触样本表面,同时不会由于电极电阻或样本的污染(5)而引入相当可观的误差。电极材料应在试验条件下能耐腐蚀。当对制造样本进行测试时,例如连接衬套,线缆等等,采用的电极作为样本或其装配组件的一部分。在这类场合,绝缘电阻或电导的测量值此时包括电极或安装材料的污染影响,同时在实际使用时通常与样本性能有关。
3括号里的粗体数字参阅这些试验方法附属的参考文献清单。
图1 接线柱电极(用于扁平固体样本)
6.1.1 接线柱和锥形销电极,图1和图2,提供了一种施加电压到刚性绝缘材料的方法,以允许评估材料的电阻或电导性能。这些电极尝试模拟实际使用条件,例如仪器面板和接线板上的接线柱。当层压绝缘材料具有高树脂含量表面时,锥形销电极与接线柱电极相比,由于其能更加亲密接触绝缘材料实体上,可以获得稍微较低点的绝缘电阻值。获得的电阻或电导值高度受到每个销子与电介质材料的独立接触,销子的表面粗糙度和电介质材料中孔的光洁度的影响。不同样本很难获得再现性的试验结果。
A. 厚板样本
B. 管状样本
C. 条状样本
使用普拉特&惠特尼No.3锥形销
图2 锥形销电极
6.1.2 图3试验装置的金属棒主要设计用于评估挠性带状薄固体样本的绝缘电阻或电导,可作为电学质量控制的一种简单简易的方式。当绝缘材料的宽度比其厚度大很多时,该装置在能更满意获得表面电阻或电导的近似值。
6.1.3 银色漆,图4,图5和图6,在商业用途通常具有到高电导性能,银色漆有空气干燥或低温烘烤型两个品种,其具有足够的孔隙,以允许湿气在银色漆之间扩散,因此在施加电极之后,允许对试验样本进行状态调节。在研究耐湿度影响和温度变化的影响时,这是一个特别有用的特征,然而,在将电导漆作为电极材料之前,应确保漆中的溶剂不会侵蚀材料,以改变材料的电性能。用细毛刷可获得相当光滑的保护电极边缘。然而,对于圆盘状电极,当使用刻度圆规和银色漆绘制电极的轮廓圆,同时用刷子充满封闭区域时,可以获得更加尖锐的边缘。
6.1.4 可以使用图4,图5和图6所示的喷涂金属,如果试验样本可以获得满意的附着力性能。薄喷涂电极在漆膜尽可能快的涂覆方面具有特殊优点。
6.1.5 在6.1.4给定的相同条件下,可以使用蒸镀金属。
6.1.6 图4所示的金属箔可以作为电极作用到样本表面上。电介质电阻或电导研究所用金属箔的厚度范围为6~80μm。铅或锡箔是较常用的箔,这些物质通过较小数量的凡士林、硅润脂,油或其它合适材料作为粘合剂使得箔附着在试验样本上。这类电极应施加足够的平稳压力以排除所有皱褶,同时清除箔边缘周围过量的粘合剂,此处可以通过清洗手巾纸来擦拭过量的粘合剂。一种非常有效的方法是使用一台硬的窄滚压机(宽度为10-15mm),同时向外滚压表面,直到箔上没有可见的压印痕迹。只有样本具有非常平的表面,本技术才可以满足使用需求。粘合剂薄膜应小心地降低到2.5μm。由于该薄膜与样本相关连,它将总是导致测量电阻值太高。对于厚度<250μm的较低电阻样本,该误差可能变得极大。同时,硬滚压机可用力将尖锐粒子压入或穿过薄膜(50μm)。箔电极没有气孔,在电极作用之后将不允许对试验样本进行状态调节。粘合剂可在高温下丧失其有效性,迫使有必要在压力下使用扁平金属支撑板。在合适切割设备帮助下,可能从某个电极切割成合适宽度的条带,以形成被保护电极和保护电极。该三接线柱样本通常不能用于表面电阻或电导测量,因为油脂残留在间隙表面。
6.1.7 如图4所示,水中或其它合适装置中分散的胶体石墨可用于刷洗无孔薄板绝缘材料,以形成空气干燥电极。只有满足以下所有的条件,才推荐使用该电极材料:
6.1.7.1 待测试的材料必须接受一层石墨涂层,该涂层在测试之前将不会发生脱落。
6.1.7.2 正在测试的材料必须不能轻易吸收水。
6.1.7.3 状态调节必须在干燥气氛(规程D 6054,步骤B)中进行,同时应在相同气氛中进行测量。
6.1.8 液态金属电极能给出满意的结果,同时可作为一种备用方法来使得与样达到必要的接触,以有效地进行电阻测量。上端电极形成的液态金属应受到不锈钢环形件的限制,每个环形件应通过在远离液态金属的侧上磨斜边的方式来让其较低的边缘缩减至形成一个锐边缘。图7和图8显示了两种可能的电极布置方式。
6.1.9 图4的金属平板(被保护的)可在室温和高温下用于测试挠性和压缩材料。对条带来说,该金属平板应为圆形或矩形。
6.1.9.1 在某些电池设计中采用观察到金属平板电极体系变化来测量油脂或填充化合物。该电池预先装配,然后待测试材料添加到固定电极之间的电池中或电极以预定电极间距强制压入材料中。由于这些电池中电极形状的原因,使得难于测量有效电极区域和电极之间的距离。每个电池常数K(等于表1的A/t因子)可通过下式获得:
(1)
式中:
K单位为厘米;
C单位为皮法拉,指的是以空气为电介质的电极体系电容。C的测量方法见试验方法D150。
6.1.10如图4所示,导电橡胶已经用作为电极材料。导电橡胶材料必须采用合适的板子作为衬里,同时必须足够软,以使得当施加适当压力时,可与样本获得有效接触。
注1:有证据表明采用导电橡胶电极获得电导值总是小于(20~70%)采用锡箔电极获得的值(6)。当订单对数值精度有要求时,这些接触误差可以忽略,一套适当设计的导电橡胶电极可提供一种快速方式来测量电导和电阻。
6.1.11 在测试导线和线缆的绝缘性时,水可用作为一个电极。样本两端必须远离水,同时其长度应使得可以忽略沿着绝缘材料的泄漏。当有必要在样本每一端使用保护时,参考特定的导线和线缆试验方法。当用于标准化时,要求在水中添加氯化钠以使得氯化钠浓度为1.0~1.1%NaCl,以确保获得适当的电导。在温度达到大约100℃进行测量证明是可行的。